Statistics-and-Probability-.../README.md

115 lines
7.4 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Statistics and Probability in Python 📊 📈 ![license](https://img.shields.io/github/license/Pegah-Ardehkhani/Statistics-and-Probability-in-Python.svg) ![releases](https://img.shields.io/github/release/Pegah-Ardehkhani/Statistics-and-Probability-in-Python.svg)
> **`Note`**: This repository is still developing.
<p align="center">
<img width="500" height="350" src="https://cdn.dribbble.com/users/962944/screenshots/14138307/media/ca3377660c3d2053c9d91ac175871429.gif">
</p>
## Table of content ✍️
**Chapter 1: Special Continuous Random Variables** <a href="https://colab.research.google.com/github/Pegah-Ardehkhani/Statistics-and-Probability-in-Python/blob/main/Chapter%201%20Special%20Continuous%20Random%20Variables.ipynb" target="_parent\"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> [![nbviewer](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.org/github/Pegah-Ardehkhani/Statistics-and-Probability-in-Python/blob/main/Chapter%201%20Special%20Continuous%20Random%20Variables.ipynb)
- 1.1. Normal (Gaussian) Distribution
- 1.2. Chi-square Distribution
- 1.3. T-student Distribution
- 1.4. Fisher Distribution
- 1.5. Continuous Uniform Distribution
- 1.6. Exponential Distribution
- 1.7. Gamma Distribution
- 1.8. Beta Distribution
- 1.9. Weibull Distribution
- 1.10. Cauchy Distribution
- 1.11. Laplace Distribution
**Chapter 2: Special Discrete Random Variables** <a href="https://colab.research.google.com/github/Pegah-Ardehkhani/Statistics-and-Probability-in-Python/blob/main/Chapter%202%20Special%20Discrete%20Random%20Variables.ipynb" target="_parent\"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> [![nbviewer](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.org/github/Pegah-Ardehkhani/Statistics-and-Probability-in-Python/blob/main/Chapter%202%20Special%20Discrete%20Random%20Variables.ipynb)
- 2.1. Bernoulli Distribution
- 2.2. Binomial Distribution
- 2.3. Negative Binomial (Pascal) Distribution
- 2.4. Geometric Distribution
- 2.5. Poisson Distribution
- 2.6. Discrete Uniform Distribution
- 2.7. Hypergeometric Distribution
**Chapter 3: Confidence Intervals** <a href="https://colab.research.google.com/github/Pegah-Ardehkhani/Statistics-and-Probability-in-Python/blob/main/Chapter%203%20Confidence%20Intervals.ipynb" target="_parent\"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> [![nbviewer](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.org/github/Pegah-Ardehkhani/Statistics-and-Probability-in-Python/blob/main/Chapter%203%20Confidence%20Intervals.ipynb)
- 3.1. Confidence Interval for the Mean of a Normal Population
- 3.1.1. Known Standard Deviation
- 3.1.2. Unknown Standard Deviation
- 3.2. Confidence Interval for the Variance of a Normal Population
- 3.2.1. Unknown Mean of the Population
- 3.2.2. Known Mean of the Population
- 3.3. Confidence Interval for the Difference in Means of Two Normal Population
- 3.3.1. Known Variances
- 3.3.2. Unknown but Equal Variances
- 3.4. Confidence Interval for the Ratio of Variances of Two Normal Populations
- 3.5. Confidence Interval for the Mean of a Bernoulli Random Variable
**Chapter 4: Parametric Hypothesis Testing** <a href="https://colab.research.google.com/github/Pegah-Ardehkhani/Statistics-and-Probability-in-Python/blob/main/Chapter%204%20Parametric%20Hypothesis%20Testing.ipynb" target="_parent\"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> [![nbviewer](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.org/github/Pegah-Ardehkhani/Statistics-and-Probability-in-Python/blob/main/Chapter%204%20Parametric%20Hypothesis%20Testing.ipynb)
- 4.1. Introduction
- 4.2. Test Concerning the Mean of a Normal Population
- 4.2.1. Known Standard Deviation
- 4.2.2. Unknown Standard Deviation
- 4.3. Test Concerning the Equality of Means of Two Normal Populations
- 4.3.1. Known Variances
- 4.3.2. Unknown but Equal Variances
- 4.4. Paired t-test
- 4.5. Test Concerning the Variance of a Normal Population
- 4.6. Test Concerning the Equality of Variances of Two Normal Populations
- 4.7. Test Concerning P in Bernoulli Populations
- 4.8. Test Concerning the Equality of P in Two Bernoulli Populations
**Chapter 5: Statistical Hypothesis Testing** <a href="https://colab.research.google.com/github/Pegah-Ardehkhani/Statistics-and-Probability-in-Python/blob/main/Chapter%205%20Statistical%20Hypothesis%20Testing.ipynb" target="_parent\"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> [![nbviewer](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.org/github/Pegah-Ardehkhani/Statistics-and-Probability-in-Python/blob/main/Chapter%205%20Statistical%20Hypothesis%20Testing.ipynb)
- 5.1. Normality Tests
- 5.1.1. Shapiro-Wilk Test
- 5.1.2. DAgostinos Test
- 5.1.3. Anderson-Darling Test
- 5.2. Correlation Tests
- 5.2.1. Pearsons Correlation Coefficient
- 5.2.2. Spearmans Rank Correlation
- 5.2.3. Kendalls Rank Correlation
- 5.2.4. Chi-Squared Test
- 5.3. Stationary Tests
- 5.3.1. Augmented Dickey-Fuller Unit Root Test
- 5.3.2. Kwiatkowski-Phillips-Schmidt-Shin Test
- 5.4. Other Tests
- 5.4.1. Mann-Whitney U-Test
- 5.4.2. Wilcoxon Signed-Rank Test
- 5.4.3. Kruskal-Wallis H Test
- 5.4.4. Friedman Test
**Chapter 6: Regression** <a href="https://colab.research.google.com/github/Pegah-Ardehkhani/Statistics-and-Probability-in-Python/blob/main/Chapter%206%20Regression.ipynb" target="_parent\"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> [![nbviewer](https://img.shields.io/badge/render-nbviewer-orange.svg)](https://nbviewer.org/github/Pegah-Ardehkhani/Statistics-and-Probability-in-Python/blob/main/Chapter%206%20Regression.ipynb)
- 6.1. Introduction
- 6.2. Least Squares Estimators of the Regression Parameters
- 6.3. Statistical Inferences about the Regression Parameters
- 6.3.1. Inferences Concerning B
- 6.3.1.1. Known Variance
- 6.3.1.2. Unknown Variance
- 6.3.2. Inferences Concerning A
- 6.3.2.1. Unknown Variance
- 6.3.3. T-tests for Regression Parameters with statsmodels
- 6.3.4. F-statistic for Overall Significance in Regression
- 6.4. Confidence Intervals Concerning Regression Models
- 6.4.1. Confidence Interval for B
- 6.4.1.1. Known Variance
- 6.4.1.2. Unknown Variance
- 6.4.2. Confidence Interval for A
- 6.4.2.1. Unknown Variance
- 6.4.3. Confidence Interval for A+Bx
- 6.4.3.1. Unknown Variance
- 6.4.4. Prediction Interval of a Future Response
- 6.5. Residuals
- 6.5.1. Regression Diagnostic
- 6.5.2. Multicolinearity
**Chapter 7: Analysis of Variance (ANOVA)** <a href="https://colab.research.google.com/github/Pegah-Ardehkhani/Statistics-and-Probability-in-Python/blob/main/Chapter%207%20Analysis%20of%20Variance%20(Anova).ipynb" target="_parent\"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> [![nbviewer](https://img.shields.io/badge/render-nbviewer-orange.svg)](http://nbviewer.org/github/Pegah-Ardehkhani/Statistics-and-Probability-in-Python/blob/main/Chapter%207%20Analysis%20of%20Variance%20%28Anova%29.ipynb)
- 7.1. One-Way Analysis of Variance
- 7.1.1. Equal Sample Sizes
- 7.1.2. Unequal Sample Sizes
- 7.2. Two-Way Analysis of Variance